Section 2.2: Properties from Algebra Notes

Addition Property: If
$$a = b$$
 and $c = d$,
then $a + c = b + d$.

Subtraction Property: If a = b and c = d, then a - c = b - d.

Multiplication Property: If a = b, then ca = cb.

Division Property: If a = b and c \neq 0, then $\frac{a}{c} = \frac{b}{c}$ Substitution Property: if a = b, then either a or b may be substituted for the other in any equation or inequality.

Reflexive Property: a = a.

Symmetric Property: if a = b, then b = a.

Transitive Property: if a = b and b = c, then a = c. **Combining Like Terms:** combining like terms using addition, subtraction, multiplication, and division

Distributive Property: a(b + c) = ab + ac.

Properties of Congruence

Reflexive Property: $DE \cong DE$; $\angle D \cong \angle D$

Symmetric Property: -If $\overline{DE} \cong \overline{FG}$, then $\overline{FG} \cong \overline{DE}$; -If $\angle D \cong \angle B$, then $\angle B \cong \angle D$.

Transitive Property: -If DE \cong FG and FG \cong JK, then DE \cong JK; -If $\angle D \cong \angle B$ and $\angle B \cong \angle C$, then $\angle D \cong \angle C$.

Introduction to Two Column Proofs	
Given:	
Prove:	
Statements	Reasons
	All reasons must be: 1. Given 2. Postulates 3. Theorems 4. Definitions 5. Properties

Algebra Connection: <u>Given:</u> 3x - 10 = 20 <u>Prove: x = 10</u>.

Statements	Reasons
1. 3x - 10 = 20	1. Given
2. 3x = 30	2. Addition Property
3. $x = 10$	3. Division Property

Algebra Connection: <u>Given:</u> 2x + y = 31; y = 5 Prove: x = 13

Statements	Reasons
1. 2x + y = 31; y = 5	1. Given
2. 2x + 5 = 31	2. Substitution
3. 2x = 26	3. Subtraction Property
4. x = 13	4. Division Property